微型双光子显微镜对脑科学领域的重大突破

文章来源: 人气:761 发表时间:2018-01-11

北京大学学者成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。

透镜,滤光片研发生产.jpg

北京大学学者成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。

  这一成果由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历时三年多完成。论文于5月29日在线发表于《自然》杂志子刊《自然方法》(Nature Methods)上,并已申请多项专利。

  新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。

  该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针的有效利用。同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。

  未来,该系统与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的目标发挥重要作用。

据程院士介绍,双光子显微镜其实不是新鲜事物,1930年代,M·Goeppert Mayer就提出了双光子吸收跃迁的基本原理;1960年代,激光器的发明使得双光子效应被验证和应用;1990年,Denk,Webb发明了第一台双光子显微镜,至今已有20多年的历史。

  如今,双光子荧光显微镜是活体动物神经成像的经典方法。双光子成像本身具有高分辨率、高通量(高速)、非侵入、成像深度大等特点,与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,能够在生命体和细胞仍具有活性的状态下对其功能进行动态观察,使得人们可以研究处于生理状态时的动物大脑内的神经元活动。

  双光子成像技术面临的挑战

  程院士认为,尽管双光子成像有看得准、看得深、光损伤小等优点,但也存在看活体不准、扫描速度慢、体积庞大无法便携化等缺点。

  之前在神经科学领域,如果科学家想要对小动物在行为过程中的大脑活动进行成像研究,是采用了一种看起来非常好玩而又黑科技的方式。

  将虚拟现实与双光子成像相结合,在小动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在“真实”的环境之中,通过动物四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动,以求达到研究神经元在动物行为中所起到的作用。


  • 相关产品
相关资讯